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On the Stationary Distribution of a Stochastic 
Chemical Process without Detailed Balance 
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An exact expression of the stationary distribution is found for a particular 
chemical model without detailed balance. An analytical approximation of this 
solution is obtained for small values of the concentration. It is shown that the 
WKB continuous approximation of the distribution is valid for all values of the 
concentration. 
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1. I N T R O D U C T I O N  

The birth-and-death formalism has been widely used in the stochastic 
theory of chemical reactions (1 4) as well as in many other fields of physics 
and natural sciences. (3) A master equation describes the evolution of the 
system; its stationary solution serves as a basis for the study of the 
asymptotical behavior, and for many other purposes. (5'6) Unfortunately the 
steady state is known explicitly only for step-by-step processes, and in some 
particular cases(2); otherwise one has to make use of some approximation. 
In fact the exact steady state is generally replaced by the stationary solution 
of a continuous approximation of the master equation, such as a Fokker-  
Planck equation (7'9) or the so-called WKB approximation. (8't~ 

In this paper we study a particular case of non-step-by-step chemical 
process where the previous problem may be solved exactly, and the 
stationary solution of its master equation is written explicitly. 

Then this solution is compared with the distribution obtained by the 
WKB approximation. It is shown that this method yields a correct represen- 
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tation of the steady state for all values of the concentrations at the 
thermodynamic limit, which confirms the conclusions of other authors (6'1~ 
for step-by-step processes. 

2. A SOLUBLE CASE OF CHEMICAL PROCESS WITHOUT 
DETAILED BALANCE 

2.1. General Theory 

Let the stochastic variable X represent the number of particles of some 
chemical species in a reacting system. If X is the only variable and if the 
mixture is supposed to remain homogeneous, the stochastic state of the 
system is described by the probability distribution p = (Pi), Pi being the 
probability that X = i. 

According to the hypothesis of the birth-and-death formalism, (1'4) (p~) 
obeys a master equation which may be written 

d ~ W r 
dZ Pi -~ r= ~ - n  ( i - r P i - r  -- W i P i )  (1) 

r ~ 0  

where W[ is the transition rate form X = i to X = i + r, due to one of the 
possible reactions. The transition amplitude r ranges from - n to m, n and 
m being usually small positive integers. 

The stationary solution of Eq. (1) is easily found for step-by-step 
reactions, where s = r = 1, since the detailed balance equation 

%(p)  - -  W~-  ~ i  - W/l-  1/7i- 1 -~- 0 (2 )  

then determines the steady state (2'5) and allows the calculation of all p~ by 
recurrence. 

Such a simple relation does not exist for non-step-by-step reactions, 
However, it may be noticed that Eq. (2) may be generalized to any 
chemical system, under the form 

Rr - g)i(P) ~- i_r lOi_r- -  0 for every i (3) 
r = - - n + l  

with 
r - 1  

R;= X W/ 
j ~  --?1 

- - -Ew/  
j = r  

i f - n < r < O  

if 1 < r < m (4) 
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Indeed it is easily verified that the right-hand side of (1) equals r l ( P ) -  
cps(p) and that %(p) = 0; thus cpi(p) = 0 for all i in the stationary state. 

The recurrence relation (3) is apparently more complicated than the 
relation obtained from (1) in the stationary state, but its order is lower, 
since in qPi the index of p runs only from - n  + 1 to m. 

In fact this advantage is generally not very useful apart  from numeri- 
cal evaluations, since in most cases the explicit solution of (3) is not known 
when n or m 4: 1. 

We now describe a case where this solution may be found exactly. 

2.2. An Exactly Soluble Case  

Let us consider a chemical system where n = 1 and m = 2 (or the 
contrary case), such as 

A + X ~ . _ _ ) Y +  C 
(5) 

B + 2 Y e--2-2__ 2 X + D 

where the concentrations of the species A, B, C, D are kept constant. The 
total number  N of molecules X and Y also remains constant according to 
(5), and the state of the system may be defined by the number  of molecules 
X only. 

Although the reverse reactions ~---  are always present in principle, we 
shall assume that they may be neglected, which is a reasonable approxima- 
tion if for instance the concentrations of C and D are maintained to very 
low values. Thus we obtain a theoretical system similar to the system 
studied by G6rtz and Walls (11'12)" 

A + x W ~ - I Y  
(5') 

W 2 
B +  2Y---> 2X 

The master equation reads in this case 

d --1 __ ( W / - 1  d-[ Pi  = W / +  I P i + I  "-1- W, 2 )p,. + Wi2 2pi_2 (6 )  

and Eq. (3) becomes 

qoi(p) ~--- - -  W / 2 2 P i  - W / 2 _ l P i _ l  -q - W / - ~ T i  ~-- 0 ( i ) 2 )  
(7) 

=- - W po + w , - ' p ,  = o 

Let us write 

q, = w,% (8) 
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and 

~, = w ? / W # '  

Then the recurrence equations (7) take the simple form 

ql = ctlqo 

qi+, = a ,+l (q ,  + q , - , )  ( i  >1 1) 

which suggests that we introduce the new variables 

SO ~--" q0 

Si = ai qi ( i >1 1) 
j = l  

which satisfy the relations 

Si = Si-1 + f l i - ' S i - 2  

with 

/~, = (Oti)--I = "~/t/~i-- 1/ ~/"i2 

Taking s o = q0 = 1, we obtain 

S l = l  

$ 2 =  l + f i  1 

S 3 = 1 + fll -'}" /~2 

S 4 = 1 -F fll 4- fi2 + f13 § fll f13 

and in general 

where 

(9) 

(lO) 

(11) 

(12) 

(13) 

[ i / 2 ]  = i / 2  i f / i s  even 

= (i - 1 ) /2  if i is odd  (15) 

~(i,f) denotes the sum over all the sets I~ of k increasing indices (i 1, 
i 2 . . . . .  ik) chosen among 1,2 . . . . .  n -  1, and such that the difference 
between two successive indices is at least 2. 

For  instance if n = 6, 

(16 2) = (1,3) + (1,4) + (1,5) + (2,4) + (2,5) + (3,5) 

( 1 3 ) = ( 1 , 3 , 5 )  

[i/21 

s, = ~ E<, :~ ,8 , , ,8 ;  - �9 - & ( 1 4  / 
k=O 
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Formula (14) is established by recurrence, noticing that if k < [(n - 1) 
/21, 

I k ( I ~ )  = ( I~_0  + ( , _ 2 , n )  (16) 
and if [(n - 1)/2] < k < [n/2], which implies n = 2n' and k = n', 

( I;'~,) = ( I;'~7_12,2n ') (17) 

Equations (8), (11), and (14) determine completely the stationary solution 
(Pi), apart from a normalization factor. 

It remains to give them a more useful analytic form, which is done in 
the following section for low densities. 

3. CONTINUOUS APPROXIMATIONS OF THE STEADY STATE 

3.1. Analytical Approximation of the Exact Steady State for 
Low Concentrations 

Let f~ be the volume of the system, and x = X/~2  be the concentration 
of X. For large ~, x may be considered a continuous variable. By switching 
from sums to integrals in formula (14) one obtains 

[ i /2] 
s i = ~ dt I f l ( t , )  f l ( t 2 ) . ' ,  f l ( tk )  

_ J t k  i+2e 

where e = ~2 -1, and f lU)  is the continuous version of fli = Wi-1/W, 2. For 
reactions (5) the general properties of the transition rates (8'9) imply 

W i - I  = ~2k-~ax  (19) 

W~ 2 = ~ k 2 b ( n  - x ) ( n  - x - e) 

where k -~ and k 2 are the macroscopic rate constants, and a = A / ~ ,  
b = B / f l .  Thus 

~ ( x )  = k - ~ a ( k Z b ) - ' x ( n  - x ) - ' ( n  - x - e ) - '  (20) 

Let us assume that x tends to 0 with e, and more precisely that x is of order 
f~-~ for some v > 0. We may define 

= ~"x = O(1) (21) 

and 

/?(s = / ~ ( s  = f~-'V(x) (22) 

Then y(x) admits a finite limit as f~ ~ 0e and Eq. (18) takes the asymptotic 
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form 

Ei/21 fooXdtl W 0  f (23) Si = 2 ~'~k 2v " 
k = O  tk-1+2C ~-~ 

The right member of (23) may be written 

which gives 

fo;dtt y(tl) foYdt2 y(t2) " " " fo;dtk y(tk)[1 + O(e~-P)l 

with 

si = E kt dty(t) 1 + O(el-")]  (25) 
k = 0  

for u = 1/2, (25) yields for large i 

si = exp[ fo;~dtT(t) ] (26) 

which, in terms of x, becomes 

si=exp[f~foXdtfl(t)] ( x ~ 2  - ' /2) (27) 

Then (11) and (14) yield the following continuous expression for the 
stationary solution of the master equation when x ~ a - 1 / 2 :  

l exp(f~fooX[_lnfl(t)+ B(t)]dt} (28) pst(X) ~ W2(x ) 

which may be written 

pst(x) cc exp[~ U(x)] ( x ~ 2  - ' /2) (29) 

U(x) = f o X [ - i n  fl( t) + fl( t) ] dt (29') 

It should be pointed out that expressions (28) and (29) are by no means 
valid for finite values of x. In particular they have no maximum for the 
macroscopic value of x [determined by fl(x) = 2] as it should be for pst(x), 
but this point does not affect the validity of (28) and (29) for low 
concentrations. 

These asymptotical expressions will be useful for comparison with the 
results of the WKB approximation of the master equation. 

L;0 ]kE 1 dty(t) 1 + O(el-P)l  (24) 
k~ 
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3.2. The Continuous Approximations of the Master Equation 

There are two classical methods to get a continuous approximation of 
the master equation at the thermodynamic limit: f~ --~ oe, x -~ oe, x = X/a  
= const. 

The first one is to transform the master equation into a Fokker-Planck 
equation(6'7): this method is satisfying for finite times. However, the sta- 
tionary distribution obtained in this way may differ appreciably from the 
exact result(6); afortiori, it should not be expected to agree with this result 
When x ~  -1/2, since the method no longer applies. It may indeed be 
shown by working out the Fokker-Planck equation for reactions (5) that 
the resulting steady state does not satisfy (29). This is not surprising; the 
point is that the following approximation still holds in these conditions. 

This method, which may be called by analogy the WKB approxima- 
tion, consists in writing the probability distribution in the asymptotic form 
given by Kubo et al. (8) at the thermodynamic limit: 

p (x) cc exp [ a U(x/a) ] (30) 

where U(x) is supposed to be analytic. 
Recently Lemarchand (1~ proposed a systematic application of this 

method by expanding U(x) in powers of e = f]- l :  

U(x) = U~ + eU'(x) + . . .  (31) 

In this way he obtained the exact steady state of step-by-step processes. 
If we apply this method to reactions (5), the master equation (6) yields 

the following equation in the stationary case: 

W2(x)exp( - ~0U~ ~ l(x)exp( 0U~ I + w2(x)_ w -  o (32) 

which leads to 

( l+[l+4fl( t )]  1/2 } 
U~ =foXln at (33) 

2fl(t) 

and 

pst(x) cc exp [ft U~ ] (34) 

It is easily verified that expression (33) presents a maximum, as expected, 
when x equals the macroscopic stationary concentration 2, which is real- 
ized for fl = 2. Moreover, when the scaled variable q = ( x -  2)~ 1/2 is 
introduced, the distribution (33) becomes Gaussian if ~2---> oe: 

Pst(q) cc exp[ �89 U"~ 2 ] 
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with 

d2U 0 1 dfl 
u,,o(~) = ~ (~) = -5 ~ (~) 

in agreement with the general results of Kurtz (7) or Keizer, (ls'16) which 
yield 

Pst(q) ec exp[ �89 U"(2)q 2 ] 

with 

If0 2- e(,) ] 1 de d2 x2 dt = (.~) 
u " & )  = d-  7 -4 -7- 3 (0  3 dx 

In principle, the WKB method should only apply for finite values of x. 
However, it is seen that expression (34) does agree with the continuous 
representation (28) of the exact steady state when x~f l -1 /2 .  

Indeed, when x << 1, or equivalently fi << 1, (33) may be written 

uO = s  _ ln  fi(t) + fl(t) + O( fl2) ] dt (35) 

which is identical to (29'). 
Thus the WKB approximation still holds for low concentrations. In 

fact it will be shown in Section 4 that this approximation holds for any 
value of the concentration at the thermodynamic limit. 

4. A GENERAL RESULT ON THE WKB APPROXIMATION 

In Section 2 we have obtained the exact stationary solution of the 
master equation by introducing the quantity qi = W,2pi, which satisfies 
Eq. (10): 

qi = ~i(q~-~ + q;-2) i f / > / 2  (36) 

G6rtz (11~ proposed that the master equation be approximated by means of 
the function 

r i = qi/q~_~ (37) 

which is supposed to vary slowly with i. Thus one may write 

r/+ 1 = r i -}- O(a  1) (38) 

fa being the volume of the system. 
The quantity r~ verifies the exact equation 

ri+ 1 = c%+,(1 + 1/ri) (39) 

but the present approximation amounts to replace r i by the solution r ~ of 



The Stationary Distribution of a Stochastic Chemical Process 145 

the equation 

Thus 

ri = 0/i(1 71- 1/ri) 

r 0 = (0/i/2)[ 1 + (1 + 4/0/i) '/2] 

(40) 

(41) 

and the corresponding approximation for ql is 
i+1 

qO cc I I  r~ (42) 
j=2 

but the relation between qi and qO is not clear at the thermodynamic limit: 
f~--> oo, i---~ oo, i / f~= x. 

However it is shown in Appendix A that under reasonable assump- 
tions the exact solution of (39) satisfies the inequalities 

r~ < r i < ri o (43) 

Thus, taking qi = 1, we have 

rO+l i+1 lJI I~ 
r ~ qO = 1-I r~ < qi = ri < 4 =  qO (44) 

j=2 j = l  j= l  

At the thermodynamic limit the hypothesis (38) leads to the WKB approxi- 
mation, which thus yields a continuous estimate q~ of qO for x = i/~2. 

Then 
qi oc exp f~ U(x) 

qO cc exp ~2 U~ 

and (24) implies 

r~ 
U~ + a - ' l o g  ~ < U(x) < U~ (45) 

Therefore U~ U(x) as f~---~ oo, which establishes the validity of the 
WKB method and confirms the results obtained in Section 3 by a direct 
comparison of the solutions. 

APPENDIX A 

Proof of inequalities (43): r?+ l < ri < r ~  r 0 is the positive solution of 
Eq. (40), 

rio = 0/i(1 + 1/rO) (A1) 

or 
4 ~--" [ 0/i -]- ( ~ -t- 40/i)I/2]/2 (A2) 
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while r~ = q J q i - 1  satisfies the recurrence relations 

r I = o~ 1 
(A3) 

ri+ 1 = or + l / r i )  ( i  >/ l) 

a i being defined by Eq. (9): 

e~i = W / 2 / W f  1 ( A 4 )  

It is clear that for the chemical system (5) 

W o l ~ -  W 2 : 0  

Thus it may  be reasonably assumed, without any detailed hypothesis on the 
transition rates, that ai smoothly decreases f rom o~ >> 1 to 0 as i increases 
from 1 to N. More  precisely, with the usual form of the transition rates (~s'~4) 

W/-1 r i 
(A5) 

I,V~ 2 oc ( N - i ) (  X - i - 1) 

ai is given by 

cr i oc ( N  - i ) ( N  - i - 1 ) / i  (A6) 

which indeed is a decreasing function of i. 
As a consequence 4 decreases from r ~ >> 1 to r0N = 0 when i varies 

from 1 to N, according to formula (A2). It is seen from (A1) and (A3) that 
if r,. > r ~  1 (respectively, r / <  r/~ then ri+ 1 < r~ < r~ (respectively, 
ri+ 1 > r~ > r/) and conversely. Thus a necessary and sufficient condit ion 
for r i to be a decreasing function of i is that condit ion (43) hold for every i: 

r~ < ri < 4 ( a 7 )  

These inequalities are verified for i = 1, since r 1 = a/. Indeed (A1) shows 
that 

a i < r ~ < a i + 1 for every i (AS) 

and because of the properties of a~, 

a 2 +  l<<a~ 

[with expression (A6) of a i, a 2 ~  a l / 2  >> 1]. Now let us suppose that (A7) 
holds for one value of i: then it also holds for i + 1. Indeed r i > r~ 1 implies 
ri+ 1 < r~ ri < r0 implies 

ri+ 1 > OL/+,(1 -I- l l r O )  = Ol i+ , rO/o l ,  (A9) 

and it will be shown that 

~ i + , , ~  > r0+ 2 (A10) 

which establishes the recurrence of property (A7). �9 
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Proof of (A10). 

and define a by 

Let the relation (A2) between ~ and r ~ be written 

OLi+ ,F?/OL i = ~ ( ~ )  (A1 1) 

which gives 

2 (t  + 
a = = (A12) 

1 + r?o~i+l/tX i 1 .Jr- r?o~i+llOg i 

Since q~(a) increases with a, (A10) is equivalent to a > ai+2, or 

ogioL,+ 2 1 + r ~ 
- -  < (a13)  
(0Li+I) 2 1 + r~  

This relation is obviously true for small values of i, since then r ~ >> l, and 
the right-hand side of (A13) (which is always greater than 1) is 

On the other hand if i-----N, it is seen from (A6) that log a~ is a concave 
function of i (and this would be true for W2a: ( N -  i) a and any positive 
value of a); thus 

OLiOLi+2/(Ogi+l)2 < 1 ' 

and (A13) is true again. 
Finally (A13) holds at the thermodynamic limit, when x = i / ~ .  In- 

deed, taking the logarithm of (A13) and writing z = loga(x) ,  one obtains 

d2z ~ - 2  < --log 1 + a -  - -  dz (A14) 
d x  2 1 + r ~  d x  1 + r ~  -~x 

which is verified for any finite value of x. 
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